

#### SETO CSP Program Summit 2019



energy.gov/solar-office

# Development of a UAS-Driven Universal Field Assessment, Correction, Enhancement Tool Adopting Non-Intrusive Optics

CPS # 3..., 3...

Partners: CU-Boulder, Tietronix

March 19, 2019

PI: Julius Yellowhair, Sandia National Laboratories co-PI: Guangdong Zhu, NREL

## **Outline**

- Introduction
- Purpose
- Technology Overview
- Optical Methods
  - Near-Field Target Imaging
  - Far-Field Target Image
- Conclusion

## Introduction

- The project aims to develop a first-of-a-kind airborne, non-intrusive optical characterization tool for heliostat fields
  - Develop data collection and analysis methods to assess optical performance of heliostat collector fields: slope error, canting error, tracking error
  - Develop capability for airborne assessments using an unmanned aerial system (UAS)
  - Demonstrate at NSTTF and then at a commercial field
  - Advance the concept from TRL3 to TRL6



## **Purpose**

- No tool currently exists that will assess multiple optical errors in a heliostat field efficiently and accurately
- Benefits:
  - Assess heliostat field for optical errors, identify low performing heliostats, and make corrections to those heliostats
  - Frequent monitoring of the heliostat field
    - Quickly identify issues
    - Quantify temporal effects on optical performance
  - Ensure high performance from the heliostat field
    - Consistently achieve needed high temperatures for Gen3 power towers
  - Reduce O&M costs
    - Efficiently and accurately assessing the heliostat field using UAS technology

# **Technology Overview**

Develop flight paths for UAS



Assess field for optical errors using far-field targets

- Slope error
- Tracking error
- Canting error

 Apply constraints to optimize flight paths





Correct canting using near-field target imaging

- Use live video with theoretical target mapping as overlay to provide feedback
  - Stretch Goal autonomously
     ID specific correction plan in real-time

# **UAS Imaging Platform**



#### Criteria

- Positional accuracy
- Stability
- Flight time
- Payload

#### **UAS**

Flybycopters (frame, motors, ESC, props, RTK GPS)

#### Camera

• 10-12 Mpix

## **Outline**

- Introduction
- Purpose
- Technology Overview
- Optical Methods
  - Near-Field Target Imaging
  - Far-Field Target Image
- Conclusion

# **Near-Field Target Imaging (HFACET** → **UFACET)**



Camera on Fixed Platform - Heliostats Off-Line



Camera on Mobile Platform – Heliostats In-Situ

# **UFACET Analysis**





# Non-Intrusive Optics Approach (1/2)

Develop a <u>flexible</u> and <u>non-intrusive</u> optical (NIO)
 characterization methodology and tool to <u>efficiently</u> survey a utility-scale field without interrupting plant operation





# Non-Intrusive Optics Approach (2/2)

- Given a series of images of a heliostat, compare the reflected tower edge in each facet with that of a reference facet with known canting
- Distortions and misalignments of the reflected edge can be measured to calculate optical errors







## **Conclusions**

- Sandia and NREL are developing a UAS-based imaging system to assess heliostats for optical errors using farfield targets
  - Slope errors
  - Tracking errors
  - Canting errors
- Correct canting errors using near-field target imaging for feedback

## Questions

Thank you!

### Contacts:

Julius Yellowhair, Sandia, jeyello@sandia.gov

Guangdong Zhu, NREL, Guangdong.zhu@nrel.gov

Dan Small, Sandia, desmall@sandia.gov